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ABSTRACT

We describe a new open source package for calculating properties of galaxy clusters, including

NFW halo profiles with and without the effects of cluster miscentering. This pure-Python package,

cluster-lensing, provides well-documented and easy-to-use classes and functions for calculating

cluster scaling relations, including mass-richness and mass-concentration relations from the litera-

ture, as well as the surface mass density Σ(R) and differential surface mass density ∆Σ(R) profiles,

probed by weak lensing magnification and shear. Galaxy cluster miscentering is especially a con-

cern for stacked weak lensing shear studies of galaxy clusters, where offsets between the assumed

and the true underlying matter distribution can lead to a significant bias in the mass estimates if

not accounted for. This software has been developed and released in a public GitHub repository,

and is licensed under the permissive MIT license. The cluster-lensing package is archived on

Zenodo (Ford 2016). Full documentation, source code, and installation instructions are available at

http://jesford.github.io/cluster-lensing/.

Keywords: methods: data analysis – methods: numerical – galaxies: clusters: general – gravitational

lensing: weak – dark matter

1. INTRODUCTION

Clusters of galaxies are the largest gravitationally col-

lapsed structures to have formed in the history of the

universe. As such, they are interesting both from a cos-

mological as well as an astrophysics perspective. In the

former case, the galaxy cluster number density as a func-

tion of mass (the cluster mass function) is a probe of

cosmological parameters including the fractional matter

density Ωm and the normalization of the matter power

spectrum σ8. Astrophysically, the deep potential wells

of galaxy clusters are environments useful for testing

theories of general relativity, galaxy evolution, and gas

and plasma physics, among other things (Voit 2005).

The common thread among these diverse investiga-

tions is the requisite knowledge of the mass of the galaxy

cluster, which is largely composed of its invisible dark

matter halo. Although many techniques exist for esti-

mating the total mass of these systems, weak lensing

has emerged as somewhat of a gold standard, since it

is sensitive to the mass itself, and not to the dynami-

cal state or other biased tracers of the underlying mass.

Scaling relations between weak lensing derived masses,
and other observables, including richness, X-ray lumi-

nosity and temperature, for examples, are typically cal-

ibrated from large surveys and extrapolated to clusters

for which gravitational lensing measurements are impos-

sible or unreliable. Since weak lensing masses are often

considered the “true” masses, against which other esti-

mates are compared (e.g. Leauthaud et al. 2010; von der

Linden et al. 2014; Hoekstra et al. 2015), it is paramount

that cluster masses from weak lensing modeling are as

unbiased as possible.

For stacked weak lensing measurements of galaxy clus-

ters, an important source of bias in fitting a mass model

is the inclusion of the effect of miscentering offsets. Mis-

centering occurs when the center of the mass distribu-

tion – the dark matter halo – does not perfectly coincide

with the assumed center around which tangential shear

(or magnification) profiles are being measured. Candi-

date centers for galaxy clusters are necessarily chosen

from observational proxies, and often include a single

galaxy, such as the brightest or most massive member,

or the centroid of some extended quantity like the peak

of X-ray emission or average of galaxy positions (George

et al. 2012). The particular choice of center may be off-

set from the true center due to interesting physical pro-
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cesses such as recent mergers and cluster evolution, or

simply due to misidentification of the proxy of interest

(Johnston et al. 2007).

The miscentering effect on the stacked weak lensing

profile can be included in a proper modeling of the mea-

surement, as done in Johnston et al. (2007); Mandel-

baum et al. (2010); Oguri & Takada (2011); George et al.

(2012); Sehgal et al. (2013); Oguri (2014); Ford et al.

(2014, 2015); Simet et al. (2016). The inclusion of this

effect commonly assumes a form for the distribution of

offsets, such as a Rayleigh distribution in radius (which

represents a 2D Gaussian in the plane of the sky). This

distribution is convolved with the standard (centered)

halo profile to obtain the miscentered version. Software

for calculating these miscentered weak lensing profiles

was developed in order to produce results in Ford et al.

(2014, 2015), and has recently been publicly released to

the astronomical community (Ford 2016).1

When many different gravitational lenses are stacked,

as is often necessary to increase signal-to-noise for weak

lensing measurements, care must be taken in the inter-

pretation of the average signal. The issue here is that the

(differential) surface mass density is not a linear func-

tion of the mass, so the average of many stacked pro-

files does not directly yield the average mass of the lens

sample. Care must be taken to consider the underlying

distribution of cluster masses as well as the redshifts of

lenses and sources, all of which affect the amplitude of

the measured lensing profile. One approach to this is

to use a so-called composite-halo approach (e.g. Hilde-

brandt et al. 2011; Ford et al. 2012, 2014, 2015; Simet

et al. 2016), where profiles are calculated for all indi-

vidual lens objects and then averaged together to cre-

ate a model that can be fit to the measurement. The

ClusterEnsemble() class discussed in Section 2.3 is de-

signed with this approach in mind.

A popular model for the dark matter distribution in

a gravitationally collapsed halo, such as a galaxy clus-

ter, is the Navarro, Frenk, and White (NFW) model.

This density profile (given in Equation 1 below) was

determined from numerical simulations that included

the dissipationless collapse of density fluctuations un-

der gravity (Navarro et al. 1997). The simpler Singular

Isothermal Sphere density model, which only has one

free parameter in contrast to the two for NFW, does

not tend to fit the inner profiles of halos well and is also

unphysical in that the total mass diverges (Schneider

2006). Other models such as the generalized-NFW and

the Einasto profile tend to better describe the full radial

distribution of dark matter in halos, at the expense of

1 https://github.com/jesford/cluster-lensing

adding a third parameter to characterize the inner slope

of the density profiles (see e.g. discussion in Dutton &

Macciò 2014). In the software package presented in this

work we only include the standard 2-parameter NFW

model, but future work should make alternative models

available as well.

2. DESCRIPTION OF THE CODE

In this section we demonstrate each of the individual

modules available in the cluster-lensing package. In

Section 2.1 we describe a class for calculating surface

mass density profiles directly from NFW and cosmolog-

ical parameters. Next we outline the functions available

for mass-concentration relations in Section 2.2. Then

in Section 2.3 we present the class ClusterEnsemble(),

and its related functions, which tie together the previ-

ously discussed functionality into a framework for easily

manipulating and producing profiles for multiple galaxy

clusters at once, from common observational quantities.

Much of the content of this section comes directly from

the online documentation.2 Throughout the modules,

dimensionful quantities are labelled as such by means of

the astropy.units package.

2.1. nfw

The nfw module contains a single class called

SurfaceMassDensity(), which computes the surface

mass density Σ(R) and the differential surface mass den-

sity ∆Σ(R) using the class methods sigma_nfw() and

deltasigma_nfw(), respectively. These profiles are cal-

culated according to the analytical formulas first derived

by Wright & Brainerd (2000), assuming the spherical

NFW model, and can be applied to any dark matter

halo: this module is not specific to galaxy clusters.

The 3-dimensional density profile of an NFW halo is

given by

ρ(r) =
δcρcrit

(r/rs)(1 + r/rs)2
, (1)

where rs is the cluster scale radius, δc is the character-

istic halo overdensity, and ρcrit = ρcrit(z) is the critical

energy density of the universe at the lens redshift. These

three parameters3 must be specified when instantiating

the class SurfaceMassDensity(), via the arguments rs,

delta_c, and rho_crit, respectively. The units on rs

are assumed to be Mpc, delta_c is dimensionless, and

rho_crit is in M�Mpc−1pc−2, although the actual in-

clusion of the astropy.units on these variables is op-

tional. The user will probably also want to choose the

radial bins for the calculation, which are specified via the

2 http://jesford.github.io/cluster-lensing/

3 or, in the case of calculating multiple NFW halos at once,
three array-like objects representing each of these parameters

https://github.com/jesford/cluster-lensing
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keyword argument rbins, in Mpc. The surface mass

density is the integral along the line-of-sight of the 3-

dimensional density:

Σ(R) = 2

∫ ∞
0

ρ(R, y)dy. (2)

Here R is the projected radial distance (in the plane of

the sky).

We can adopt the dimensionless radius x ≡ R/rs and,

following from Wright & Brainerd (2000), show that:

Σ(x) = 2rsδcρcritf(x), (3)

where f(x) =
1

x2−1

(
1− ln

[
1
x +

√
1
x2 − 1

]
/
√

1− x2
)
, for x < 1;

1/3, for x = 1;

1
x2−1

(
1− arccos (1/x)/

√
x2 − 1

)
, for x > 1.

(4)

The differential surface mass density is calculated from

the definition

∆Σ(x) ≡ Σ(< x)− Σ(x), (5)

where

Σ(< x) =
2

x2

∫ x

0

Σ(x′)x′dx′ (6)

is the average surface mass density interior to

the dimensionless radius x. The quantity ∆Σ is

what is actually probed by a weak lensing shear

measurement (in contrast to magnification which

probes the surface mass density Σ directly). It

is related to the average tangential shear around

a lens by

∆Σ(x) = 〈γt(x)〉Σcrit, (7)

where the critical surface mass density is

Σcrit =
c2

4πG

Ds

DlDls
. (8)

Here c is the speed of light, G is the gravita-

tional constant, and Ds, Dl, and Dls are the an-

gular diameter distances between the observer

and source, the observer and lens, and the lens

and source, respectively.

We can rewrite the differential surface mass density in

the form in which it is computed in the nfw module:

∆Σ(x) = rsδcρcritg(x), (9)

where g(x) =

[
4/x2+2/(x2−1)√

1−x2

]
ln

(
1+
√

(1−x)/(1+x)

1−
√

(1−x)/(1+x)

)
+ 4
x2 ln x

2 −
2

(x2−1) , for x < 1;

(10/3) + 4 ln(1/2), for x = 1;[
8

x2
√
x2−1

+ 4
(x2−1)3/2

]
arctan

√
x−1
1+x

+ 4
x2 ln x

2 −
2

(x2−1) , for x > 1.

(10)

Running sigma_nfw() or deltasigma_nfw(), with

only a specification of halo properties rs, delta_c,

rho_crit, and radial bins rbins, will lead to the cal-

culation of halo profiles according to Equations 3 and 5

outlined above.

>>> from clusterlensing import SurfaceMassDensity
>>> rbins = [0.1, 0.5, 1.0, 2.0, 4.0] # Mpc
>>> smd = SurfaceMassDensity(rs=[0.1],
... rho_crit=[0.2],
... delta_c=[9700.],
... rbins=rbins)
>>> sigma = smd.sigma_nfw()
>>> # surface mass density with default units
>>> sigma[0]
<Quantity [ 129.33333333, 11.64751032, 3.33992059,
0.89839601, 0.23327149] solMass / pc2>
>>>
>>> # surface mass density with no units
>>> sigma[0].value
array([ 129.33333333, 11.64751032, 3.33992059,
0.89839601, 0.23327149])

These are the standard centered NFW profiles, under

the assumption that the peak of the halo density distri-

bution perfectly coincides with the identified halo cen-

ter. This may not be a good assumption, however, and

the user can instead run these calculations for miscen-

tered halos by specifying the optional input parameter

offsets. This parameter sets the width of a distribu-

tion of centroid offsets, assuming a 2-dimensional Gaus-

sian distribution on the sky. This offset distribution is

equivalent to, and implemented in code as, a uniform

distribution in angle and a Rayleigh probability distri-

bution in radius:

P (Roff) =
Roff

σ2
off

exp

[
− 1

2

(
Roff

σoff

)2 ]
. (11)

The parameter offsets is equivalent to σoff in this equa-

tion.

>>> from clusterlensing import SurfaceMassDensity
>>> rbins = [0.1, 0.5, 1.0, 2.0, 4.0]
>>> # single miscentered halo profile
>>> smd = SurfaceMassDensity(rs=[0.1],
... rho_crit=[0.2],
... delta_c=[9700.],
... rbins=rbins,
... offsets=[0.3])
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>>> sigma = smd.sigma_nfw()
>>> sigma[0]
<Quantity [ 38.60655298, 17.57285034, 4.11253461,
0.93809627, 0.23574031] solMass / pc2>
>>>
>>> # example calculating multiple profiles
>>> smd = SurfaceMassDensity(rs=[0.1,0.2,0.2],
... rho_crit=[0.2,0.2,0.2],
... delta_c=[9700,9700,9000],
... rbins=rbins,
... offsets=[0.3,0.3,0.3])
>>> sigma = smd.sigma_nfw()
>>> sigma
<Quantity [[ 38.60655298, 17.57285034, 4.11253461,
0.93809627, 0.23574031], [ 181.91820855, 92.86651598,
27.34020647, 6.94677803, 1.81488253], [ 168.79009041,
86.16480864, 25.36720188, 6.44546415, 1.68391163]
] solMass / pc2>

The miscentered surface mass density profiles are

given by the centered profiles (Equations 3 and 5), con-

volved with the offset distribution (Equation 11). We

follow the offset halo formalism first written down by

Yang et al. (2006), and applied to cluster miscentering

by, e.g. Johnston et al. (2007); George et al. (2012); Ford

et al. (2014, 2015); Simet et al. (2016). Specifically, we

calculate the offset surface mass density Σoff as follows:

Σoff(R) =

∫ ∞
0

Σ(R|Roff) P (Roff) dRoff (12)

Σ(R|Roff) =
1

2π

∫ 2π

0

Σ(r)dθ (13)

Here r =
√
R2 +R2

off − 2RRoff cos(θ) and θ is the az-

imuthal angle (Yang et al. 2006). Equation 12 de-

scribes the average stacked profile of many differ-

ent galaxy clusters, where each individual clus-

ter is assumed to have an individual centroid off-

set, which is drawn from the radial distribution

P (Roff), and from a uniform distribution in angle.

The ∆Σoff profile is calculated from Σoff , in analogy with

Equations 5 and 6.

>>> from clusterlensing import SurfaceMassDensity
>>> rbins = [0.1, 0.5, 1.0, 2.0, 4.0]
>>> # perfectly centered DeltaSigma profile
>>> smd = SurfaceMassDensity(rs=[0.1],
... rho_crit=[0.2],
... delta_c=[9700.],
... rbins=rbins)
>>> deltasigma = smd.deltasigma_nfw()
>>> deltasigma[0]
<Quantity [ 108.78445455, 25.47093418, 10.29627483,
3.71631903, 1.23840727] solMass / pc2>
>>>
>>> # miscentered DeltaSigma profile
>>> smd = SurfaceMassDensity(rs=[0.1],
... rho_crit=[0.2],
... delta_c=[9700.],
... rbins=rbins,
... offsets=[0.3])
>>> deltasigma = smd.deltasigma_nfw()

>>> deltasigma[0]
<Quantity [ 0.71370144, 9.35821817, 8.90118561,
3.6475417, 1.23610325] solMass / pc2>

In the case of perfectly centered clusters, both

quantities Σ and ∆Σ are calculated indepen-

dently from straightforward formula (Wright &

Brainerd 2000). In the miscentered case, how-

ever, calculation of ∆Σoff is more complicated

and relies on the quantity Σoff directly. If the

current instantiation of SurfaceMassDensity() has

already done the Σoff calculation, then its result

will be employed in calculating ∆Σoff ; if not, it

will be calculated for the first time. It is be-

cause of the interdependence of these two calcu-

lations that the decision was made to have the

radial bins parameter rbins be passed into the

SurfaceMassDensity() object itself, instead of be-

ing specified when a particular profile is to be

calculated. This choice ensures that the same

radial bins will be used for every type of profile

(so that Σoff and ∆Σoff correspond to the same

radii), but also requires the user to instantiate a

new SurfaceMassDensity() object if they want to

use different radial bins.

2.2. cofm

The cofm module currently contains three func-

tions, each of which calculates halo concentration from

mass, redshift, and cosmology, according to a pre-

scription given in the literature. These functions are

c_DuttonMaccio() (for calculations following Dutton &

Macciò 2014), c_Duffy() (following Duffy et al. 2008),

and c_Prada() (for Prada et al. 2012). Halo mass-

concentration relations are an area of active research,

and there have been discrepancies between results from

different observations and simulations, and disagree-

ment surrounding the best choice of model (see e.g. Dut-

ton & Macciò 2014; Klypin et al. 2016). We do not aim

to join this discussion here, but focus on outlining the

functionality provided by the cluster-lensing pack-

age, for calculating these different concentration values.

All three functions require two input parameters

(scalars or array-like inputs), which are the halo red-

shift(s) z and the halo mass(es) m. Specifically, the latter

is assumed to correspond to the M200 mass definition,

in units of solar masses. M200 is the mass interior to a

sphere of radius r200, within which the average density

is 200ρcrit(z).

The default cosmology used is from the mea-

surements by the Planck Collaboration et al.

(2014), which is imported from the module

astropy.cosmology.Planck13. However, the user

can specify alternative cosmological parameters. For
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calculating concentration according to either the Duffy

et al. (2008) or the Dutton & Macciò (2014) prescrip-

tion, the only cosmological parameter required is the

Hubble parameter, which can be passed into c_Duffy()

or c_DuttonMaccio() as the keyword argument h. For

the Prada et al. (2012) concentration, the user would

want to specify Om_M and Om_L (the fractional energy

densities of matter and the cosmological constant) in

addition to h, in the call to c_Prada().

The c_DuttonMaccio() calculation of concentration

is done according to the power-law

log10 c200 = a+ b log10(M200/[1012h−1M�]), (14)

where

a = 0.52 + 0.385 exp[−0.617 z1.21], (15)

b = −0.101 + 0.206z. (16)

The above three equations map to Equations 7, 11, and

10, respectively in Dutton & Macciò (2014). The values

in these expressions were determined from simulations

of halos between 0 < z < 5, spanning over 5 orders of

magnitude in mass, and were shown to match observa-

tional measurements of low-redshift galaxies and clus-

ters (Dutton & Macciò 2014). This concentration-mass

relation is the default one used by the clusters module,

discussed in Section 2.3.

>>> from clusterlensing import cofm
>>> # single 10**14 Msun halo at z=1
>>> cofm.c_DuttonMaccio(0.1, 1e14)
array([ 5.13397936])
>>> # example with multiple halos
>>> cofm.c_DuttonMaccio([0.1, 0.5], [1e14, 1e15])
array([ 5.13397936, 3.67907305])

The concentration calculation in c_Duffy() is

c200 = A (M200/Mpivot)
B (1 + z)C , (17)

where

{A,B,C} = {5.71,−0.084,−0.47}, (18)

Mpivot = 2× 1012 h−1M�. (19)

Equation 17 above corresponds to Equation 4 in Duffy

et al. (2008). The values for A, B, and C can be found

in Table 1 of that work, where they are specific to the

“full” (relaxed and unrelaxed) sample of simulated NFW

halos, spanning the redshift range 0 < z < 2. Mpivot can

be found in the caption of their Table 1 as well. One

caveat with this relation is that the cosmology used in

creating the Duffy et al. (2008) simulations was that of

the now outdated WMAP5 experiment (Komatsu et al.

2009).

>>> from clusterlensing import cofm
>>> # default cosmology (h=0.6777)
>>> cofm.c_Duffy([0.1, 0.5], [1e14, 1e15])
array([ 4.06126115, 2.89302767])
>>> # with h=1
>>> cofm.c_Duffy([0.1, 0.5], [1e14, 1e15], h=1)
array([ 3.93068341, 2.80001099])

The c_Prada() concentration calculation is much

more complex, and written in terms of σ(M200, xp), the

rms fluctuation of the density field. The Prada et al.

(2012) halo concentration is given by4

c200 = 2.881B0(xp)

[(
B1(xp)σ(M200, xp)

1.257

)1.022

+ 1

]
× exp

(
0.06

[B1(xp)σ(M200, xp)]2

)
.

(20)

The cosmology and redshift dependence is encoded by

the variable xp, which is

xp =

(
ΩΛ,0

Ωm,0

)1/3

(1 + z)−1. (21)

The functions within Equation 20 are as follows:

σ(M200, xp) = D(xp)
16.9y0.41

p

1 + 1.102y0.2
p + 6.22y0.333

p

(22)

yp ≡
1012h−1M�

M200
(23)

D(xp) =
5

2

(
Ωm,0

ΩΛ,0

)1/3

√
1 + x3

p

x
3/2
p

∫ xp

0

x3/2dx

(1 + x3)3/2
(24)

B0(xp) =
cmin(xp)

cmin(1.393)
(25)

B1(xp) =
σ−1

min(xp)

σ−1
min(1.393)

(26)

cmin(xp) = 3.681+1.352

[
1

π
arctan[6.948(xp−0.424)]+

1

2

]
(27)

σ−1
min(xp) = 1.047+0.599

[
1

π
arctan[7.386(xp−0.526)]+

1

2

]
(28)

In order of appearance above, beginning with our Equa-

tion 20, these equations correspond to Equations 14-

17, 13, 23a, 23b, 12, 18a, 18b, 19, 20 in Prada et al.

4 we use the subscript “p” to distinguish some variables in the
equations from Prada et al. (2012) from those in the current work
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(2012). The numerical values in these equations were

obtained empirically from the simulations described in

that work.

>>> from clusterlensing import cofm
>>> cofm.c_Prada([0.1, 0.5], [1e14, 1e15])
array([ 5.06733941, 5.99897362])
>>> cofm.c_Prada([0.1, 0.1, 0.1], [1e13, 1e14, 1e15])
array([ 5.71130928, 5.06733941, 5.30163572])

The last code example demonstrates the controversial

feature of the Prada et al. (2012) mass-concentration re-

lation – an upturn in concentration values for the high-

est mass halos. This is in opposition to the canonical

view that higher mass halos have lower concentrations

(Navarro et al. 1996, 1997; Jing 2000; Bullock et al.

2001).

2.3. clusters

The clusters module is designed to provide a

catalog-level tool for calculating, tracking, and up-

dating galaxy cluster properties and profiles, through

structuring data from multiple clusters as an up-

datable Pandas Dataframe, and providing an intelli-

gent interface to the other modules discussed in Sec-

tions 2.1 and 2.2. This module contains a sin-

gle class ClusterEnsemble(), as well as three func-

tions, mass_to_richness(), richness_to_mass(), and

calc_delta_c().

The function calc_delta_c() takes a single input pa-

rameter, the cluster concentration c200 (e.g. as calcu-

lated by one of the functions in the cofm module), and

returns the characteristic halo overdensity:

δc =

(
200

3

)
c3200

ln(1 + c200)− c200/(1 + c200)
. (29)

Both input and output are dimensionless here. For ex-

ample, to convert a concentration value of c200 = 5 to

δc, you could do:

>>> from clusterlensing.clusters import calc_delta_c
>>> calc_delta_c(5)
8694.8101906193315

The pair of functions mass_to_richness() and

richness_to_mass(), as their names imply, perform

conversions between cluster mass and richness. The

only required input parameter to mass_to_richness()

is the mass, and likewise the only required input to

richness_to_mass() is richness. The calculations

assume a power-law form for the relationship between

these variables, which is a common simple choice

for this scaling relation (e.g. Johnston et al.

2007; Mandelbaum et al. 2008; Andreon & Hurn

2010):5

M200 = M0

(
N200

20

)β
. (30)

Here M0 is the normalization, which defaults to 2.7 ×
1013, but can be changed in the call to either function

by setting the norm keyword argument. The power-law

slope β = 1.4 by default, but can be set by specifying

the optional slope input parameter. When these func-

tions are invoked by the ClusterEnsemble() class, they

are applied to the particular mass definition M200, and

assume units of M�. However the functions themselves

do not assume a mass definition or unit, and can be gen-

eralized to any parameter (or type of richness) that has

a power-law relationship with mass.

>>> from clusterlensing.clusters import \
... mass_to_richness, richness_to_mass
>>> richness_to_mass(50)
97382243648736.9
>>> mass_to_richness(97382243648736.9)
50.0
>>> # specify other power-law parameters
>>> richness_to_mass(20, slope=1.5, norm=1e14)
100000000000000.0

The ClusterEnsemble() class creates, modifies and

tracks a Pandas DataFrame containing the properties

and attributes of many galaxy clusters at once. When

given a new or updated cluster property, it calculates

and updates all dependent cluster properties, treating

each cluster (row) in the DataFrame as an individual

object. This makes it easy to calculate the Σ(R) and

∆Σ(R) weak lensing profiles for many different mass

clusters at different redshifts, with a single command.

In contrast to using the SurfaceMassDensity() class

discussed in Section 2.1, the user only needs to specify
the cluster redshifts and either of the mass or richness. If

richness is supplied, then mass is calculated from it, as-

suming the form of Equation 30 (which is customizable);

if mass is specified instead, than the inverse relation is

used to calculate richness. In either case the changes are

propagated to any dependent variables.

>>> from clusterlensing import ClusterEnsemble
>>> z = [0.1,0.2,0.3]
>>> c = ClusterEnsemble(z)
>>> n200 = [20, 20, 20]
>>> c.n200 = n200
>>>
>>> # display cluster dataframe
>>> c.dataframe

z n200 m200 r200 c200

5 Note that the pivot point of 20 is arbitrary, but allows
for a straightforward interpretation of M0 as the mass of
cluster with richness 20.
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delta_c rs
0 0.1 20 2.700000e+13 0.612222 5.839934

12421.201995 0.104834
1 0.2 20 2.700000e+13 0.591082 5.644512

11480.644557 0.104718
2 0.3 20 2.700000e+13 0.569474 5.442457

10555.781440 0.104636
>>>
>>> # specify mass directly
>>> c.m200 = [1e13, 1e14, 1e15]
>>> c.dataframe

z n200 m200 r200 c200
delta_c rs

0 0.1 9.838141 1.000000e+13 0.439664 6.439529
15599.114356 0.068276

1 0.2 50.956400 1.000000e+14 0.914520 4.979102
8612.362538 0.183672

2 0.3 263.927382 1.000000e+15 1.898248 3.886853
4947.982895 0.488377

The above examples also demonstrate that cluster

masses are converted to concentrations and to character-

istic halo overdensities. This assumes the default mass-

concentration relation of the c_DuttonMaccio() form,

or the user can instead specify another of the relations by

setting the keyword cm="Prada" or cm="Duffy", when

the ClusterEnsemble() object is instantiated. Cosmol-

ogy can also be specified upon instantiation, by setting

the cosmology keyword to be any astropy.cosmology

object that has an h and a Om0 attribute. If not spec-

ified explicitly, the default cosmological model used is

astropy.cosmology.Planck13. Here is an example

of creating a ClusterEnsemble() object that uses the

WMAP5 cosmology (Komatsu et al. 2009) and the Duffy

et al. (2008) concentration:

>>> from astropy.cosmology import WMAP5 as cosmo
>>> c = ClusterEnsemble(z, cm="Duffy",
... cosmology=cosmo)
>>> c.n200 = [20, 30, 40]
>>> c.dataframe

z n200 m200 r200 c200
delta_c rs

0 0.1 20 2.700000e+13 0.599910 4.520029
6920.955951 0.132723

1 0.2 30 4.763120e+13 0.702040 4.136873
5678.897592 0.169703

2 0.3 40 7.125343e+13 0.775889 3.851601
4849.836498 0.201446

Instead of using the dataframe attribute, which re-

trieves the Pandas DataFrame object itself, it might be

useful to use the show() method, which prints additional

information to the screen, including assumptions of the

mass-richness relation:

>>> c.show()

Cluster Ensemble:

z n200 m200 r200 c200
delta_c rs

0 0.1 20 2.700000e+13 0.599910 4.520029
6920.955951 0.132723

1 0.2 30 4.763120e+13 0.702040 4.136873
5678.897592 0.169703

2 0.3 40 7.125343e+13 0.775889 3.851601
4849.836498 0.201446

Mass-Richness Power Law:
M200 = norm * (N200 / 20) ^ slope

norm: 2.7e+13 solMass
slope: 1.4

>>> # update the mass-richness parameters
>>> # and show the resulting table
>>> c.massrich_norm = 3e13
>>> c.massrich_slope = 1.5
>>> c.show()

Cluster Ensemble:
z n200 m200 r200 c200

delta_c rs
0 0.1 20 3.000000e+13 0.621353 4.480202

6784.805438 0.138689
1 0.2 30 5.511352e+13 0.737028 4.086481

5526.615129 0.180358
2 0.3 40 8.485281e+13 0.822406 3.795500

4696.109606 0.216679

Mass-Richness Power Law:
M200 = norm * (N200 / 20) ^ slope

norm: 3e+13 solMass
slope: 1.5

The last example also demonstrates how the slope or

normalization of the mass-richness relation can be al-

tered, and the changes propagate from richness through

to mass and other variables.

Then all the ingredients are in place to calculate halo

profiles by invoking the calc_nfw() method, which in-

terfaces to the sigma_nfw() and deltasigma_nfw()

methods of the SurfaceMassDensity() class, and

passes it the required inputs {rs, ρcrit, δc} for all the

clusters behind the scenes. The value of ρcrit is cal-

culated at every cluster redshift using the (default

astropy.cosmology.Planck13 or user-specified) cos-

mological model. The user must specify the desired ra-

dial bins rbins in Mpc.

>>> import numpy as np
>>> # create some logarithmic bins:
>>> rmin, rmax = 0.1, 5. # Mpc
>>> rbins = np.logspace(np.log10(rmin),
... np.log10(rmax),
... num = 8)
>>> # calculate the profiles:
>>> c.calc_nfw(rbins=rbins)
>>> # profiles now exist as attributes:
>>> c.sigma_nfw
<Quantity [[ 128.97156123, 62.58323349, 27.01073105,
10.60607722, 3.88999449, 1.36360964, 0.46464366,
0.15563814], [ 132.13989867, 64.10484454, 27.66159293,
10.85990257, 3.98265113, 1.39599118, 0.47565695,
0.15932308], [ 135.62272115, 65.782882, 28.38138702,
11.14121765, 4.08549675, 1.43196834, 0.48790043,
0.16342108]] solMass / pc2>
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>>> c.deltasigma_nfw
<Quantity [[ 105.3190568 , 72.43842908, 43.74538085,
23.44005481, 11.37085955, 5.10385452, 2.16011364,
0.87479771], [ 107.98098357, 74.25022426, 44.82825347,
24.01505305, 11.64776118, 5.22744541, 2.21219956,
0.89582394], [ 110.88173507, 76.23087398, 46.01581348,
24.64741078, 11.95297965, 5.36391529, 2.26978998,
0.91909571]] solMass / pc2>

Similar to the direct use of SurfaceMassDensity(),

discussed in Section 2.1, the miscentered profiles can be

calculated from the calc_nfw() method, by supplying

the optional offsets keyword with an array-like object

of length equal to the number of clusters, where each

element is the width of the offset distribution in Mpc

(σoff in Equation 11).

>>> c.calc_nfw(rbins=rbins, offsets=[0.3,0.3,0.3])
>>> # the offset sigma profile is now:
>>> c.sigma_nfw
<Quantity [[ 42.50844685, 39.74291121, 32.29894213,
18.50988719, 6.16284894, 1.89335218, 0.62609991,
0.20840423], [ 68.10228964, 63.87901872, 52.56539317,
31.20890672, 11.17821854, 3.5884285, 1.20745376,
0.40574057], [ 95.16077234, 89.48298631, 74.29328561,
45.24074628, 17.06333763, 5.66481165, 1.93408383,
0.65518747]] solMass / pc2>

Although SurfaceMassDensity() from the nfw mod-

ule, and ClusterEnsemble().calc_nfw() from the

clusters module, are both capable of computing the

same Σ(R) and ∆Σ(R) profiles, each require different

forms of input which would make sense for different use

cases. For the studies in Ford et al. (2015), Ford et al.

(2014), and Ford et al. (2012), the authors wanted do

the profile computations for many clusters at once, while

varying the mass and the miscentering offset distribu-

tion during the process of fitting the model to the data.

What was known were the redshifts and mass proxies

(cluster richness in Ford et al. 2015 and Ford et al. 2014,

and a previous mass estimate in Ford et al. 2012), and

mass-concentration relations from the literature, so the

ClusterEnsemble() framework made sense. However,

if someone wanted to simply calculate the NFW profiles

according to the Wright & Brainerd (2000) formulation,

then they might prefer to use SurfaceMassDensity()

as a tool to get profiles directly from the NFW and cos-

mological parameters rs, δc, and ρcrit(z).

2.4. Density Profile Runtime

The calculation of the standard centered NFW

profiles is fast, and the runtime is essentially

constant, independent of the number of clusters

and radial bins involved. The miscentered pro-

file calculation on the other hand, has been op-

timized as much as possible for a non-parallel

pure-Python calculation, but still requires several

Nclusters Centered? Time [seconds]

10 yes 1.26 × 10−3

10 no 5.6

50 yes 1.30 × 10−3

50 no 27.6

100 yes 1.42 × 10−3

100 no 75.0

Table 1. Total runtime for calculating both the Σ(R) and
∆Σ(R) NFW profiles for different numbers of clusters. The
calculation time is close to constant for centered calculations.
For miscentered calculations, the runtime scales linearly with
the number of clusters and with the number of radial bins
(these examples all assume 10 bins). These calculations were
run on a 2015 MacBook Pro.

integrations. The runtime for the miscentered

calculation scales linearly with both numbers of

clusters and with the number of radial bins. The

time to run these calculations for different num-

bers of clusters and bins is given in Table 1.

A simple shortcut to decrease total run time is

to consider binning clusters, to ensure you are

not calculating a nearly identical profile multiple

times. Of course, care must be taken to avoid

stacking clusters of very different masses, as dis-

cussed in the introduction.

3. EXAMPLES

Here we demonstrate the calculation of NFW

profiles for some of the most massive clusters

in the Canada-France-Hawaii Telescope Lensing

Survey (CFHTLenS; Heymans et al. 2012; Erben

et al. 2013) in Section 3.1, and show how to use

cluster-lensing to fit a model to your data in

Section 3.2.

3.1. Profiles of CFHTLenS Clusters

As an example use case, we take CFHTLenS public

galaxy cluster catalog, which is available on Zenodo6

(Ford 2014). This dataset was previously explored using

a pre-release version of the cluster-lensing software

in Ford et al. (2014, 2015). The W1 field of this survey

contains 10,745 galaxy cluster candidates in the redshift

range 0.2 ≤ z ≤ 0.9:

>>> import numpy as np
>>> data = np.loadtxt("Clusters_W1.dat")
>>> data.shape
(10745, 5)
>>> data[0:4, :] # print first 4 clusters
array([[ 34.8023, -7.01005, 0.3, 4.435, 10.],

[ 34.9425, -7.38996, 0.5, 4.545, 21.],
[ 34.8651, -6.69449, 0.5, 3.858, 6.],

6 http://dx.doi.org/10.5281/zenodo.51291

http://dx.doi.org/10.5281/zenodo.51291
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[ 34.6224, -7.32768, 0.5, 3.619, 8.]])
>>>
>>> redshift = data[:, 2]
>>> sig = data[:, 3]
>>> richness = data[:, 4]

We select a subset of the lower redshift clusters that

were detected at high significance. Then we import

clusterlensing to create a dataframe of the cluster

properties, of which we just print the first several, and

calculate the NFW profiles.

>>> # select a subset
>>> here = (sig > 15) & (redshift < 0.5)
>>> sig[here].shape
(15,)
>>> z = redshift[here]
>>> n200 = richness[here]
>>>
>>> import clusterlensing
>>> c = clusterlensing.ClusterEnsemble(z)
>>> c.n200 = n200
>>> c.dataframe.head()

z n200 m200 r200 c200
delta_c rs

0 0.4 181 5.897552e+14 1.531367 3.966101
5173.016417 0.386114

1 0.3 420 1.916332e+15 2.357815 3.658237
4332.615805 0.644522

2 0.4 176 5.670737e+14 1.511478 3.980218
5213.746469 0.379747

3 0.3 113 3.049521e+14 1.277703 4.341779
6324.420397 0.294281

4 0.4 162 5.049435e+14 1.454129 4.022285
5336.272412 0.361518

>>>
>>> rbins = np.logspace(np.log10(0.1),
... np.log10(10.0), num=20)
>>> c.calc_nfw(rbins)

Next we import the matplotlib and seaborn libraries

and configure some settings to make our plots more read-

able. The first plot we create with the commands below

presents the Σ(R) profiles for every one of these 15 clus-

ters, and is given in Figure 1.

>>> import matplotlib.pyplot as plt
>>> import seaborn as sns; sns.set()
>>> import matplotlib
>>> matplotlib.rcParams["axes.labelsize"] = 20
>>> matplotlib.rcParams["legend.fontsize"] = 20
>>>
>>> # strings for plots
>>> raxis = "$R\ [\mathrm{Mpc}]$"
>>> sgma = "$\Sigma(R)$"
>>> sgmaoff = "$\Sigma^\mathrm{off}(R)$"
>>> delta = "$\Delta$"
>>> sgmaunits = " $[M_{\odot}\ \mathrm{pc}^{-2}]$"
>>>
>>> # order from high to low richness
>>> order = c.n200.argsort()[::-1]
>>>
>>> for s, n in zip(c.sigma_nfw[order], c.n200[order]):
... plt.plot(rbins, s, label=str(int(n)))
>>> plt.xscale("log")
>>> plt.legend(fontsize=10)
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Figure 1. Surface mass density profiles Σ(R) for all 15 clus-
ters used in this example. These are the most significant
(S/N > 15) clusters detected at low redshifts (z < 0.5) in the
W1 field of CFHTLenS. See the text for links to download
this public dataset. The legend gives the richness values es-
timated in Ford et al. (2015) corresponding to each of these
clusters, which are assumed to scale with mass. They are
listed from highest to lowest richness, in the same order as
the curves.

>>> plt.ylabel(sgma+sgmaunits)
>>> plt.xlabel(raxis)
>>> plt.tight_layout()
>>> plt.savefig("f1.eps")
>>> plt.close() # output is Figure 1

If we had made a stacked measurement of the shear

or magnification profile of these clusters, then we would

want to know what the average profile of the stack looks

like. Since we already have the individual profiles, we

just need to calculate the mean across the 0th axis of the

sigma_nfw and deltasigma_nfw attribute arrays. The

plot of these average profiles is given in Figure 2.

>>> sigma = c.sigma_nfw.mean(axis=0)
>>> dsigma = c.deltasigma_nfw.mean(axis=0)
>>>
>>> plt.plot(rbins, sigma, label=sgma)
>>> plt.plot(rbins, dsigma, "--", label=delta+sgma)
>>> plt.legend()
>>> plt.ylim([0., 1400.])
>>> plt.xscale("log")
>>> plt.xlabel(raxis)
>>> plt.ylabel(sgmaunits)
>>> plt.tight_layout()
>>> plt.savefig("f2.eps")
>>> plt.close() # output is Figure 2

Finally, we may want to investigate whether cluster

miscentering has a significant effect on our sample. We

would calculate the miscentered profiles, given in Fig-

ure 3, which could be compared to the centered profiles

in Figure 2 to see which is a better fit to our measure-

ment. Below we will assume that the miscentering offset

distribution peaks at 0.1 Mpc.
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Figure 2. The average of all the surface mass density profiles
Σ(R) for each of the clusters shown in Figure 1 is given in
blue. The green curve is the average of all the individual dif-
ferential mass density profiles ∆Σ(R). These curves assume
clusters are perfectly centered on their NFW halos.
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Figure 3. Same as Figure 2 but for miscentered profiles.
Cluster centroid offsets are assumed to follow a Rayleigh
probability distribution (Equation 11, discussed in Section
2.1), which is convolved with the perfectly centered profiles
to achieve this result.

>>> offsets = np.ones(c.z.shape[0]) * 0.1
>>> c.calc_nfw(rbins, offsets=offsets)
>>> sigma_offset = c.sigma_nfw.mean(axis=0)
>>> dsigma_offset = c.deltasigma_nfw.mean(axis=0)
>>>
>>> plt.plot(rbins, sigma_offset, label=sgmaoff)
>>> plt.plot(rbins, dsigma_offset, "--",
... label=delta+sgmaoff)
>>> plt.legend()
>>> plt.ylim([0., 1400.])
>>> plt.xscale("log")
>>> plt.xlabel(raxis)
>>> plt.ylabel(sgmaunits)
>>> plt.tight_layout()
>>> plt.savefig("f3.eps")
>>> plt.close() # output is Figure 3

The above example shows a simple application of

cluster-lensing to a real dataset – a subset of the

CFHTLenS cluster catalog. For this example we kept

the customizations to a minimum, but as shown in Sec-

tions 2.3, the user can alter the parameters in the power-

law relation used to convert richness to mass, choose

the form of the mass-concentration relation assumed

for the NFW profiles, and specify a particular back-

ground cosmology. When fitting a model produced by

cluster-lensing to a measurement, one could iterate

through parameters in this space by setting various at-

tributes of the ClusterEnsemble() object (as done, e.g.

in Ford et al. 2014, 2015).

3.2. Fitting a Model

This example demonstrates the use of the emcee

package (Foreman-Mackey et al. 2013), to draw

Markov chain Monte Carlo samples for fitting a

model to a measurement of galaxy cluster shear.

We start by creating a synthetic measurement,

by using cluster-lensing to create a miscentered

∆Σ(R) profile to which we add some random

scatter. Our goal will be to estimate both the

mass and the centroid offset of the fake clus-

ter (which has true M200 = 1014M� and σoff = 0.3

Mpc), by fitting the offset halo model provided

by cluster-lensing. We will assume the cluster

redshifts z = 0.2 are known.

>>> import numpy as np
>>> from clusterlensing import ClusterEnsemble
>>>
>>> logm_true = 14
>>> off_true = 0.3
>>>
>>> nbins = 10
>>> rbins = np.logspace(np.log10(0.1), np.log10(5),
... num=nbins)
>>> redshift = [0.2]
>>> cdata = ClusterEnsemble(redshift)
>>> cdata.m200 = [10**logm_true]
>>> cdata.calc_nfw(rbins=rbins, offsets=[off_true])
>>> dsigma_true = cdata.deltasigma_nfw.mean(axis=0).value
>>>
>>> # add scatter with a stddev of 20% of data
>>> noise = np.random.normal(scale=dsigma_true*0.2,
... size=nbins)
>>> y = dsigma_true + noise
>>> yerr = np.abs(dsigma_true/3) # 33% error bars

We follow a Bayesian approach, and define

functions for the likelihood and posterior prob-

abilities. We use an uninformative flat prior,

which is constant in the reasonable ranges 10 <

log(M200/M�) < 16 and 0 < σoff < 5 Mpc, and zero

outside of those ranges.
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>>> # probability of the data given the model
>>> def lnlike(theta, z, rbins, data, stddev):
... logm, offsets = theta
...
... # calculate the model
... c = ClusterEnsemble(z)
... c.m200 = [10 ** logm]
... c.calc_nfw(rbins=rbins, offsets=[offsets])
... model = c.deltasigma_nfw.mean(axis=0).value
...
... diff = data - model
... lnlikelihood = -0.5 * np.sum(diff**2 / stddev**2)
... return lnlikelihood
>>>
>>> # uninformative prior
>>> def lnprior(theta):
... logm, offset = theta
... if 10 < logm < 16 and 0.0 <= offset < 5.0:
... return 0.0
... else:
... return -np.inf
>>>
>>> # posterior probability
>>> def lnprob(theta, z, rbins, data, stddev):
... lp = lnprior(theta)
... if not np.isfinite(lp):
... return -np.inf
... else:
... return lp + lnlike(theta, z, rbins, data, stddev)

With the help of emcee (Foreman-Mackey et al.

2013), we use 20 walkers to draw 500 samples

each from the posterior. The sampling process

below took 49 minutes to run (on a recent Mac-

Book Pro), which is significant because of the

miscentering integrations involved. As shown

in Table 1, the calculations can be many times

faster for the centered cluster case.

>>> import emcee
>>>
>>> ndim = 2
>>> nwalkers = 20
>>> p0 = np.random.rand(ndim * nwalkers).reshape((nwalkers,
... ndim))
>>> p0[:, 0] = p0[:, 0] + 13.5
>>>
>>> sampler = emcee.EnsembleSampler(nwalkers, ndim, lnprob,
... args=(redshift, rbins,
... y, yerr),
... threads=8)
>>>
>>> pos, prob, state = sampler.run_mcmc(p0, 500)

Finally, we use the corner module (Foreman-

Mackey 2016) to neatly display the results. We

discard a burn-in period encompassing the first

50 steps, which was chosen by eye after plot-

ting the walker positions. Figure 4 shows that

the posterior distribution for the best fit mass

and centroid offset overlaps with the input val-

ues (blue lines).
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Figure 4. Posterior probability distributions for the two es-
timated model parameters, the logarithm of the mass, and
the centroid offset. The true input values of these parame-
ters are shown by the blue lines, and are log(M200/M�) = 14
and σoff = 0.3 Mpc. Random noise was added to the syn-
thetic shear “measurement”, which is why the peaks of the
distributions do not exactly match the true input values.

>>> import seaborn; seaborn.set()
>>> import corner
>>> import matplotlib
>>> matplotlib.rcParams["axes.labelsize"] = 20
>>>
>>> burn_in_step = 50
>>> samples = sampler.chain[:, burn_in_step:,
... :].reshape((-1, ndim))
>>> fig = corner.corner(samples,
... labels=["$\mathrm{log}M_{200}$",
... "$\sigma_\mathrm{off}$"],
... truths=[logm_true, off_true])
>>> fig.savefig("f4.eps") # output is Figure 4

4. RELATION TO EXISTING CODE

The cluster-lensing project offers some unique ca-

pabilities over other publicly-available software, most

notably the cluster miscentering calculations. Here we

attempt to compare the software presented in this work

with other open source tools that we are aware of, and

show how cluster-lensing fits into the larger ecosys-

tem of astronomical software.

Colossus is a Python package aimed at cosmol-

ogy, halo, and large-scale structure calculations (Diemer

2015). It was used in work by Diemer & Kravtsov
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(2015) and is made available under the MIT license7.

Much of the functionality of cluster-lensing appears

to overlap with Colossus, including mass-concentration

relations (although Colossus has the advantage of

containing many more relations from the literature)

and NFW surface mass density profiles. However,

cluster-lensing also provides the miscentered halo

calculations, which are are lacking from Colossus.

While Diemer (2015) has chosen to imple-

ment basic cosmological calculations from scratch,

cluster-lensing instead relies on external modules

supplied by astropy. The only dependencies claimed

by Colossus are numpy (Walt et al. 2011) and scipy

(Jones et al. 2001–), whereas cluster-lensing addi-

tionally requires astropy (Astropy Collaboration et al.

2013) and pandas (McKinney 2010). Fewer dependen-

cies might be seen as a positive feature of Colossus; on

the other hand, astropy could be viewed as possibly

a more robust source for standard astronomical and

cosmological calculations, since it is maintained by a

large community of developers.

Another related set of code is provided by Jörg Di-

etrich’s NFW routines, archived on Zenodo (Dietrich

2016), and available on GitHub8. These Python mod-

ules calculate NFW profiles for Σ(R) and ∆Σ(R), as well

as the 3-dimensional density profiles and total mass and

projected mass inside a given radius. cluster-lensing

goes beyond the functionality of Dietrich (2016) by sup-

plying means for calculating cluster miscentering, and

having a built-in framework for handling many halos at

once. For Dietrich (2016), the user must provide the

halo concentration (along with mass and redshift) to

the NFW() class, but additional routines are available

for converting mass to concentration, including Duffy

et al. (2008) and another by Dolag et al. (2004) (a par-

tial overlap with the mass-concentration relations pro-

vided by cluster-lensing). Dietrich (2016) depends

on astropy for cosmological calculations and units, sim-

ilar to cluster-lensing, as well as the numpy and

scipy packages.

5. FUTURE DEVELOPMENT

Some of the future plans for cluster-lensing include

adding support for different density profiles. Currently

only the NFW model is provided, and alternative mass

density models would make the package more complete

and useful. The first priority will be inclusion of the

Einasto profile (Einasto 1965), and later possibilities

may include the generalized-NFW (Zhao 1996). The

default cosmology is currently that of Planck Collab-

7 http://www.benediktdiemer.com/code/

8 https://github.com/joergdietrich/NFW

oration et al. (2014), but should be updated to Planck

Collaboration et al. (2015), since this is now available as

astropy.cosmology.Planck15 (the user can currently

specify this cosmology, it is just not the default).

When surface mass density profiles have to be cal-

culated many times for many clusters, as is the case

when iterating over parameters in the process of fit-

ting a model, the processing time can become lengthy.

This issue is most pronounced for calculation of mis-

centered profiles, which require the convolution laid out

in Equations 12 and 13. One major improvement to

cluster-lensing will be the option to use parallel-

processing in these computations. The likely struc-

ture of this parallelism will be to divide the halos in

a ClusterEnsemble() catalog object among the paral-

lel threads, which will calculate the profiles for each of

their assigned clusters.

All of these future developments are currently listed

as issues on the GitHub repository. This GitHub Issue

tracker9 will continue to serve as the central place for

listing future improvements and feature requests. Users

and potential-users alike are encouraged to submit ideas

and requests through that URL.

6. SUMMARY

In this work we presented cluster-lensing, a pure-

Python package for calculating galaxy cluster profiles

and properties. We described and gave worked exam-

ples of all the functionality currently available, including

mass-concentration and mass-richness scaling relations,

and the surface mass density profiles Σ(R) and ∆Σ(R),

which are relevant for gravitational lensing. The latter

density profiles are not cluster-specific, but apply to any

mass halo that can be approximated by the NFW pre-

scription. The structure of cluster-lensing is ideal

for calculating properties and profiles for many galaxy

clusters at once. This “composite-halo” approach (i.e.

Ford et al. 2015), is especially useful for fitting models

to a stacked sample of clusters that span a range of mass

and/or redshift.

Compared to existing code, cluster-lensing stands

out by seemingly being the only publicly-available soft-

ware for calculating miscentered halo profiles. Miscen-

tering is a problem of great relevance for stacked weak

lensing studies of galaxy clusters, where halo centers are

imperfectly estimated from observational data or sim-

ply not well defined (as is the case for individual non-

spherical halos – for example in merging systems). The

resulting offsets between the assumed and real centers

change the shape of the measured shear or magnification

profile and need to be accounted for in the modeling.

9 https://github.com/jesford/cluster-lensing/issues

http://www.benediktdiemer.com/code/
https://github.com/joergdietrich/NFW
https://github.com/jesford/cluster-lensing/issues
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cluster-lensing is released under the MIT license,

and archived on Zenodo (Ford 2016). It being devel-

oped in a public repository on GitHub: http://github.

com/jesford/cluster-lensing/. Contributions to the

code can be made by submitting a pull request to the

repository, and we welcome feedback, suggestions, and

feature requests through GitHub issues, or by emailing

the author. Full documentation (including much of the

content of this paper), as well as installation instructions

and examples, are available in the online documentation,

at http://jesford.github.io/cluster-lensing/. If

cluster-lensing is used in a research project, the au-

thors would appreciate citations to the code (i.e. Ford

2016) and this paper.
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et al. 2001–), Pandas (McKinney 2010), matplotlib

(Hunter 2007), IPython (Pérez & Granger 2007),
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